Robust omniphobic surfaces.
نویسندگان
چکیده
Superhydrophobic surfaces display water contact angles greater than 150 degrees in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (gamma(lv) = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (gamma(lv) = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces- randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces-that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150 degrees and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions.
منابع مشابه
Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating
Durability is a long-standing challenge in designing liquid-repellent surfaces. A high-performance omniphobic surface must robustly repel liquids, while maintaining mechanical/chemical stability. However, liquid repellency and mechanical durability are generally mutually exclusive properties for many omniphobic surfaces-improving one performance inevitably results in decreased performance in an...
متن کاملThe springtail cuticle as a blueprint for omniphobic surfaces.
Omniphobic surfaces found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies. One example is the water and even oil-repellent cuticle of springtails (Collembola). The wingless arthropods evolved a highly textured, hierarchically arranged surface pattern that affords mechanical robustness and wetting resistance...
متن کاملWater and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.
Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on...
متن کاملSilicone Brushes: Omniphobic Surfaces with Low Sliding Angles.
Losing contact: Omniphobic surfaces can be readily produced by acid-catalyzed graft polycondensation of dimethyldimethoxysilane (PDMS). Droplets show a very small contact angle hysteresis as well as a low sliding angle of only a few degrees. The nm-thick PDMS layer is neither easily washed away nor depleted. This method offers a novel approach towards the preparation of super-liquid-repelling s...
متن کاملDropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 47 شماره
صفحات -
تاریخ انتشار 2008